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Numerical solutions for the impulsively started spin-up of a thermally stratified fluid 
in a cylinder with an insulating side wall are presented. Previous experimental and 
numerical work on stratified spin-up had not provided a comprehensive and accurate 
set of flow-field data. Further, comparisons of this work with theory showed, in 
general, a substantial discrepancy. The theory was scaled using the homogeneous 
meridional-flow spin-up time scale and thus viscous-diffusion effects were excluded 
from the interior. It was anticipated that these effects could only be significant on the 
larger viscous-diffusion time scale. However, the comparisons with theory showed 
a faster rate of decay for the measurements even over the shorter meridional-flow 
spin-up time scale. Previous workers had suggested a number of explanations 
but the cause of the discrepancy was still unresolved. To provide data to extend 
the previous work, a numerical model was used. The model was first checked 
against accurate experimental meaaurements of stratified spin-up made using a laser- 
Doppler velocimeter. New accurate results which cover ranges of Ekrnan number 
(5.92 x 10-4 < E < 7.24 x lO-4),  Rossby number (0.019 < E < 0*220), stratification 
parameter (0.0 < Xu-l < 1-03), and Prandtl number (5.68 < u < 7.10) are presented. 
These results show the radial and vertical structure of the decaying azimuthal and 
meridional flows. The inertial-internal gravity oscillations excited by the impulsive 
spin-up are clearly seen. By making use of conclusions from the previous work and the 
results presented in this paper, it is established that viscous diffusion in the interior is 
the cause of the discrepancy with theory. Stratification causes the meridional spin-up 
flow to be confined closer to the boundary disks. This results in non-uniform spin-up 
of the interior and hence flow gradients in the interior. These gradients introduce 
viscous diffusion into the interior sooner than anticipated by the theory. A previous 
suggestion that the faster decay rate is due to angular momentum being injected into 
the interior from an oscillation of the meridional corner-jet flow is shown to be 
untenable. 

1. Introduction 
Spin-up is the general process of adjustment of an initially uniformly rotating fluid 

to an externally imposed change in the magnitude of the rotation rate of its container. 
A review by Benton & Clark (1974) is available for this subject. 

Recent work on spin-up dates from the linearized analysis of Greenspan t Howard 
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(1963), in which a homogeneous fluid contained between two infinite disks and rotating 
about an axis perpendicular to the disks is subjected to a small impulsive change in 
the rotation rate of the disks. Greenspan & Howard showed that the relative azimuthal 
flow created by a rotation-rate increase leads to the formation of Ekman layers on the 
boundary disks. These boundary layers exhibit an outward mass flux and draw fluid 
from the interior region (Ekman suction), which in turn leads to an inward meridional 
secondary circulation. This circulation fills the interior, where the direct effects of 
viscosity are negligible, and uniformly spins up the interior by angular-momentum 
advection and vortex-line stretching. For a rotation-rate decrease all the flow direc- 
tions are reversed and the process is known as spin-down. Three distinct characteristic 
time scales are present in the solution: O(Q-l) ,  the time scale for the development of 
Ekman layers near the boundaries; O(E-*Q-l), the time for spin-up due to the meri- 
dional circulation; O(E-lQ-l), the viscous-diffusion time, where SZ is the rotation 
rate and E is the Ekman number. 

More recently, Warn-Varnas et al. (1978) performed an extensive experimental and 
numerical investigation of the impulsive spin-up of a homogeneous fluid in a closed 
right-circular cylinder whose axis of symmetry is parallel to the rotation axis. The 
experimental part consists of azimuthal flow measurements made with a rotating 
laser-Doppler velocimeter (LDV). The rotating-LDV technique is capable of high 
accuracy with small space and time resolution, and disturbances of the flow are virtually 
negligible (Fowlis & Martin 1975). The numerical simulations used the Navier-Stokes 
equations in axisymmetric form and employed finite-difference techniques on a 
staggered mesh with variable grid spacings. A comparison of the experimental and 
numerical results showed excellent agreement, thus verifying the numerical model 
for that problem. Both the experimental and numerical techniques had sufficient 
resolution to exhibit clearly the weak inertial oscillations excited by the impulsive 
start. 

The linearized, impulsively started spin-up of a stably stratified fluid in a cylinder 
was analysed theoretically by Walin (1969) and Sakurai (1969), resolving a controversy 
between the earlier works by Holton (1965) and Pedlosky (1967). The spin-up of a 
stratified fluid has characteristics which are different from homogeneous spin-up. 
The structure of the Ekman layers near the horizontal boundanies remains substan- 
tially unchanged, even for moderate stratification, but vertical motion is inhibited. 
Walin demonstrated that the outward Ekman mass flux enters into the interior 
directly from the corner regions. This flow is known as the corner jet. In the interior 
it forms a meridional secondary circulation that is restricted to a region closer to the 
Ekman layers. The weak oscillations excited by the impulsive spin-up are modified 
by the stratification, resulting in inertial-internal gravity modes. In  the theory of 
Walin, the homogeneous meridional-flow spin-up time, 7 = E-iSZ-l, was chosen to 
scale the equations. This choice of time scale removes from the theory processes 
occurring in time scales shorter and larger than 7.  Thus the inertial-internal gravity 
modes, which occur in a time scale O(SZ-l), are not present in the solution and viscous- 
diffusion effects, which have a time scale O(E-lSZ-'), are also absent. 

In  this paper previous experimental and numerical studies of stratified spin-up are 
described. The limitations of the previous work are discussed and the need for more, 
accurate, flow-field data is demonstrated. We decided to acquire such data using a 
numerical model. The model used by Warn-Varnas et al. (1978) was extended to allow 
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for thermal stratification, and its predictions were checked by comparing them with 
the accurate experimental measurements of Lee (1975) obtained using a rotating LDV. 

New results on the radial and vertical structures of the decaying azimuthal velocity 
over a range of Ekman number (5.92 x 10-4 < E < 7-24 x Rossby number 
(0.019 < E < 0.220), stratification parameter (0.0 < Su-l < 1.03) and Prandtl number 
(5.68 < Q 7-10] are presented. Plots of the meridional stream function are also 
presented. We found, in agreement with previous workers, that, even over the time 
scale 7,  the azimuthal flow decays faster than the predictions of the theory of Walin 
(1969). This discrepancy is discussed in the light of the previous work and the results 
presented in this paper. 

2. Previous experimental and numerical work on stratified spin-up 
Three carefully controlled laboratory experiments on impulsively started spin-up 

of a stratified liquid in a closed cylinder have been reported: Buzyna & Veronis (197 l), 
Saunders & Beardsley (1975) and Lee ( 1  975). In these experiments the plane boundaries 
were maintained horizontal and the rotation axis was vertical and coincident with the 
axis of symmetry of the cylinder. Buzyna & Veronis used a salt-stratified solution and 
photographed the movements of a neutrally buoyant dyed parcel of fluid to  mewwe 
the angular displacements of the fluid. Saunders & Beardsley used a thermally 
stratified fluid and measured the perturbation temperature field with an array of 
thermistors. These authors compared their results with the linearized theory of Walin 
(1969). In order to do so they calculated variously defined spin-up times from their 
measurements. Details of these spin-up-time definitions and the comparison proce- 
dures are not essential for the discussion in this paper and so are not given. In  general, 
these comparisons revealed that, even within the homogeneous meridional-flow spin- 
up time scale 7,  the measured azimuthal velocities decay faster than those predicted 
by the theory, and the discrepancies in the decay rates are functions of the stratification 
parameter and the location in the fluid. Various causes such aa the thermal variation 
of viscosity, probe drag and nonlinearity were postulated to account for the 
discrepancy. 

Although the above experiments were carefully performed, the limitations of the 
measurement techniques meant that accurate flow-field data were not obtained. The 
relatively high-frequency, inertial-internal gravity modes were not detected because 
either the sampling times were large compared to the periods of the modes or the 
transducers were not sufficiently sensitive. 

Lee (1975) used the disturbance-free, high-resolution, rotating-LDV technique to 
obtain quasicontinuous measurements of the azimuthal velocity in a thermally 
stratified spin-up flow. Lee also found that, in general, his results showed faster decay 
rates than the theory of Walin (1969), and this established that probe drag alone was 
not responsible for the discrepancy. Lee detected the oscillations excited by the 
impulsive start and showed that they were inertial-internal gravity modes. Lee 
compared his observed frequencies with the dispersion relation for axisymmetric, 
linearized, inviscid, inertial-internal gravity modes about a state of rigid rotation 
in a cylinder. This relation is 
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where a = R/H, R is the radius, His the half-depth of the cylinder, a, are the zeros of the 
first-order Bessel function, mis any integer, andSis the stratificationnumber (see f 3.2). 
The eigenfunctions of the problem are: 

azimuthal velocity N J,(cc,r/R) cos (mnz/H), 
radial velocity N mJ,(a,r/R) cos (mnz/H), 
vertical velocity 2: (a,/R) J,(a,r/R) sin (mnz/H). 

Lee established that the dominant mode is given by m = 2, n = 1. This is as expected, 
since the impulsive change is an axisymmetric perturbation symmetrical about mid- 
depth and of the scale of the container. A similar result was found for the inertial 
modes in homogeneous spin-up (Fowlis & Martin 1975). Lee made no measurements 
of the meridional flow. 

Numerical experiments on impulsively started, thermally stratified spin-up in a 
cylinder were conducted by Barcilon et al. (1975). These workers solved the Navier- 
Stokes equations in axisymmetric form by means of a finite-difference technique on a 
uniform grid. Azimuthal-flow results and meridional-stream-function plots were 
presented. Barcilon et al. again found that the model results decayed faster than the 
theory of Walin and they established, by comparing results for different values of the 
Rossby number, that the effects of nonlinearity were not the cause of the discrepancy. 

The meridional-stream-function plots by Barcilon et al. showed the progressive 
confinement of the meridional circulation into the regions near the Ekman layers &s 

the stratification increases. From an examination of these plots, Barcilon et al. pointed 
to an oscillation of the inclination of the corner jet between near-horizontal and near- 
vertical positions and they claimed a period of two or three times the rotation period 
for this oscillation. Barcilon et al. then argued that because of this oscillation of the 
corner jet some of the fluid spends more time in the viscous vertical boundary layer 
than it would if the jet were inclined at a steady angle to the vertical, aa given by 
Walin’s theory. While this fluid is within the vertical boundary layer, viscous 
shear adjusts its angular momentum to that of the side wall more efficiently than for 
interior fluid. Thus, according to Barcilon et al., the fluid ejected into the interior 
from the vertical boundary layer yields its newly acquired angular momentum to the 
bulk of the interior, which then appears to have a faster spin-up time than predicted 
theoretically. In  $ 5 ,  we point to a serious difficulty with this argument. 

Barcilon et al. presented azimuthal-flow results for only a single location within the 
fluid. Although their results reveal clearly the inertial-internal gravity modes, no 
quantitative analysis of their properties was made. 

3. The numerical model 
To acquire more complete data to resolve the uncertainties still presented by the 

stratified spin-up problem we decided to use a numerical model. The model used by 
Warn-Varnas et al. (1978) for homogeneous spin-up was extended to include the energy 
equation and computations of the temperature fields. Before running the model 
routinely, its accuracy was estiblished by comparing its predictions with the me&sure- 
ments of Lee (1975). A description of the model now follows. 

Consider a right circular cylinder of radius R and height 2 8  filled with a fluid 
having kinematic viscosity v, thermometric diffusivity K,  and coefficient of volumetric 
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expansion a. These physical properties of the fluid are assumed to be constant. The 
top and bottom horizontal boundaries are thermal conductors and are kept at constant 
temperatures to produce a stable stratification. The vertical temperature difference is 
2AT over 2H.  The side-wall boundary is a thermal insulator. The initial flow is taken 
to be a solid-body rotation with angular velocity Ri and the rotation rate of the cylinder 
is changed impulsively to a new value Rf = Ri + AR. The Froude number RfH/g is 
much smaller than one (typically O(l0-3) in the present cases), and the effect of the 
Sweet-Eddington circulation will be ignored (Buzyna & Veronis 197 1). 

3.1. Equations 
The governing equations are the axisymmetric incompressible Navier-Stokes equa- 
tions for a Boussinesq fluid, written for rotating cylindrical co-ordinates (r, 8, z )  with 
respective velocity components (u ,v ,w) .  Viewed in a frame rotating with the final 
rotation rate Szf, these equations are 

where 

au 1 a 
at r ar 
av 1 a 
at r ar 
aw i a a 
at t- ar az Po 

a aT l a  
at r ar az 

- = --_ 

- =--- 

+ agT i- vV2w, (ruw) -- (w2) -- - 

(ruT) -- (wT) + K V ~ T ,  

- = --- 

- =--- 

l a  aw 
r ar az 
-- (ru)+-  = 0, 

(3) 

(4) 

( 5 )  

p is the reduced pressure, T the temperature such that the full temperature equals 
To + T, and the equation of state is 

in which To and po are the reference values of temperature and density, respectively. 

u = w = O ,  v = - A Q r ,  - = -  a t  t = 0 .  

Clearly, the entire problem is symmetric about the mid-depth plane z = 0, and hence 
integration needs to be conducted for the bottom half of the cylinder, - H < z < 0, 
0 < r < R, only. The boundary conditions a t  the bottom disk are 

and the symmetry conditions at the mid-plane are 

P = Po(1 - a n ,  (7) 

The initial conditions for the fluid are 

(8) 
aT AT 
az H 

u = v = w = O ,  T = - A T  a t  z = - H ,  (9a) 

au av _ -  --- - w = O ,  T = O  at z = O .  
az az 

The boundary conditions on the cylinder wall are 
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A thin solid cylinder of very small but finite radius ( r  = ri) was inserted along the 
axis of symmetry to satisfy numerical stability requirements (Warn-Varnas et al. 
1978). Symmetry conditions require that 

3.2. Non-dimensional parameters 

The relevant non-dimensional parameters for the problem are defined as follows: 

e = AR/Ri, the Rossby number; 

E = v/4RiH2, 

a = R / H ,  the aspect ratio; 

P = i-2, H 2 / g ,  the Froude number; 

Q = V / K ,  

S = N/2!&, 

the Ekman number; 

the Prandtl number; 

the stratification number; 

where the Brunt-Vaistik frequency N is defined as N = ( a g A T / H ) i .  Note that the 
initial rotation rate Ri is chosen for the scaling. 

3.3. Numerical simulation technique 
Equations (2)-(6) and the initial and boundary conditions were finite-differenced on 
a staggered mesh with non-uniform grid spacings. The resulting time-dependent 
difference equations were solved by a time-marching procedure. Only a brief descrip- 
tion is given here of the numerical techniques; for further details the reader is referred 
to the paper by Warn-Varnas et al. (1978). 

The stretching of the grid was accomplished by use of the function 

where rl is a constant that controls the stretching of the boundary layers. A similar 
relationship was used in the z-direction. A 42 x 42 grid for the full domain was used and 
rl was such that for the values of the Ekman numbers used there were about 8 points 
in each Ekman layer. The dependent variables were distributed over the staggered 
grid with the azimuthal velocity, temperature and pressure defined a t  the same grid 
points. 

The pressure was found from a Poisson equation obtained by taking the divergence 
of (2) and (4). Thus 

ao 
at 
- = -VZp+C, 

where C denotes the combined divergence of the advection, Coriolis and buoyancy 
terms in the u- and w-equations, D is the divergence (V . u), which is small but, owing 
to machine round-off errors, not zero. This equation was solved by an AD1 iterative 
approach. The optimum iteration parameters were calculated by the method outlined 
in Wachpress (1966 p. 194). 
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FIGURE 1.  Comparison of spin-up results for Sa-l = 0.49. 4 = 7 . 2 4 ~  lo-*, 6 = 0.222. Dote 
are the laser measurements, solid lines the numerical results and broken lines the linear theoreti- 
cal predictions. The vertical locations are at mid-depth ( z / H  = 0.00) and the radial locations 
are (a) r / R  = 0.30, (b)  0.39, (c) 0.52, ( d )  0.64. 

3.4. Verification of the numerical model 
The predictions of the numerical model were checked by comparing them with the 
accurate experimental measurements of Lee (1975). Lee's apparatus consisted of a 
cylindrical container (radius R = 9-50 cm, height 2H = 6.04 cm) mounted on a 
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The location is at mid-radius, mid-depth ( r / R  = 0.5, z / H  = 0.00). 
FIGURE 2. Comparison of spin-up results for 8;c-l = 1.03, E = 5.92 x E = 0.222. 

precision-rate turntable with its axis of symmetry maintained vertical and made 
coincident with the rotation axis. The cylinder was of Plexiglas, and metal plates 
formed the upper and lower boundaries. The container was filled with water or metha- 
nol t,hat was stably stratified by maintaining the upper boundary warmer than the 
lower boundary. This temperature difference 2AT was 20 "C and a typical mean 
temperature of the fluid was 28 "C. The Plexiglas cylinder was further insulated by 
a layer of Styrofoam and insulating tapes. Azimuthal flow measurements were made 
with a LDV system mounted on the turntable. This system is described in Lee (1975) 
and Fowlis & Martin (1975); it is capable of accurate, disturbance-free measurements 
of the relative flow. The spatial resolution was 0.05 cm in the radial direction and 
0-0025 cm in the vertical direction and the temporal resolution was either 0.5 s or 
1.0 s. The ranges of the non-dimensional parameters covered in Lee's experiments were 
2 - 4 3 ~  10-4 < E < 8 . 7 5 ~  0.100 < B < 0.222, 0.17 < Sa-' < 1.03, F N O(lO-s), 
and r~ N 10. 

Results of the present numerical simulations were compared against corresponding 
data of Lee. Figures 1 and 2 are plots of scaled non-dimensional azimuthal velocity 
(w/AQrl versus non-dimensional time Qit/2n (i.e. the number of rotations based on 
Q,). The continuous curves are the numerical results and the dots are the experimental 
measurements of Lee. For later discussion, the theoretical predictions of Walin (1969), 
given in (13) (see $ Ll),  are also included (broken curves) in figures 1 and 2. 

The numerical simulations and the laboratory experiments were not performed for 
identical conditions; several small differences did exist. For the simulations the change 
in rotation rate was effectively instantaneous, but, for the experiments there were 
small time delays due to the inertia of the turntable (Lee 1975). In the actual experi- 
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FIGURE 3. Spin-up results at mid-radius ( r / R  = 0.5) for different stratification parameters: 
(a) Sa-1 = 0, (b )  0.49, (c) 1-03. Values of other parameters are listed in table 1. Vertioal locations 
are ( A )  z / H  = 0, (B)  -0.42, (C) -0.82, (D) -0.93, ( E )  - 0-97. The theoretical predictions for 
the interior points are shown in broken lines. 

ments, the values of v, K and a have small variations over the depth of fluid because 
of the temperature difference, but in the simulations constant average values were 
adopted. The simulations were carried out with a small inner cylinder of radius 
ri = 0.01 cm (see $3, (11)) .  Warn-Varnas et al. (1978) showed that an increase of ri 
to 0.1 cm made no difference to the results. 
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7 

8 E 8a-1 (8) 

Figure n, 
number (rad a-1) 

0.314 0*010 7-24 x 10-4 0.0 118.3 

0.31 4 0.019 7-24 x 10-4 0.49 116.3 

0.314 0.0 19 6-92 x 10-4 1.03 130.8 

TABLE 1. Values of the parameters for figures 3 and 4 

Figure 1 shows the spin-up results for Sa-l = 0.49, E = 7.24 x 6 = 0.222 
(Q = 0.314 rad s-1, QZr = 0.384 rad s-l) a t  four different radial locations at mid- 
depth ( z /H  = 0): (a)  r / R  = 0.30 ISSU 38), ( b )  r / R  = 0.39 (SSU 37), (c) r / R  = 0-52 
(SSU 35), ( d )  r / R  = 0.64 (SSU 36). The numbers in parentheses denote the run 
numbers used by Lee for his experiments. The fluid was water with v = 8.30 x cma 
s-l, K = 1.46 x 10-3 om2 s-1, a = 2.86 x 10-4 OC-'. The above quantities are stated to 
a significant number of digits only and this applies to all numbers in this paper based 
on measurement. 

6 = 0.222 
(Ch = 0.314 rad s-1, Q! = 0.384 rad s-l) a t  mid-radius ( r / R  = 0.5) and mid-depth 
( z /H  = 0) (SSU 71). The fluid was methanol with v = 6.79 x om2 s-l, K = 9.56 x 
lo-* cm2 s-l, a = 1.28 x 

Figures 1 and 2 show that the numerical and the experimental results agree to 
within a few per cent. The agreement is good not only for the overall decay of the 
azimuthal flow but also for the amplitudes and phases of the weakly excited, high- 
frequency, inertial-internal gravity modes. This agreement establishes the accuracy 
of the numerical model, and from this point on we proceeded to use the model to 
obtain new results. The agreement also shows that the small differences between 
the simulations and the experiments did not produce significant differences in the 
results. In  particular, these comparisons establish that the variation of viscosity due 
to temperature in the laboratory experiments cannot be used to explain the observed 
discrepancy in spin-up rates between the theory and the previous experiments (see $2). 

Figure 2 shows the spin-up results for #a-1 = 1.03, E = 5.92 x 

O C - l .  

4. Results 
In this section the results of our numerical simulations of thermally stratified spin- 

up in a cylinder are presented. The dimensions of the cylinder are the same as those 
used in Lee's (1975) experiments (radius R = 9.50 cm, half-depth H = 3.02 cm, and 
the aspect ratio a = R / H  = 3-14). New results for both the azimuthal and meridional 
flow for different values of the stratification parameters are given. 

4.1. The spatial structure of the azimuthal flow 
Figure 3 shows the scaled non-dimensional azimuthal velocity 1 v/AQr( at different 
vertical locations a t  mid-radius ( r / R  = 0.50) for three values of the stratification 
parameter. The relevant parameters are listed in table 1.  

Figure 3(a) shows the results for a homogeneous fluid. Curves (A) and (B) show 
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FIGURE 4. Spin-up results at mid-depth ( z /H  = 0) for different stratification parameters: (a) 
Sa-' = 0,  (b)  0.49, (c) 1.03. Valueg of other parameters are listed in table 1.  Radial looations 
are ( A )  T/R = 0.23, (B)  0.50, ( C )  0.77, (D)  0.96, ( E )  0.98. The theoretical predictions for the 
interior points are shown in broken lines. 

that to substantial accuracy the interior azimuthal flow is uniform in the vertical 
direction. This is consistent with the Taylor-Proudman theorem. The horizonta,l 
Ekman boundary-layer thickness may be defined as 8, N Et(2H) ,  which for the para- 
meters of figures 3 (a) and 3 (b) gives 6,/H = 0.054 and for figure 3 (c) gives $ / H  = 0-049. 
Therefore, curve ( D )  of figure 3 (u) is located slightly above the Ekman layer and the 
results show that down to this level the vertical uniformity of the azimuthal flow is 
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still essentially valid. Curve ( E )  is within the Ekman layer and the velocity decays 
much faster in this viscous region than in the interior. 

Figures 3 (b ,  c) show the numerical results (solid lines) for a stratified fluid. For later 
discussion, the theoretical predictions of Walin (1969) for the interior points are also 
shown in broken lines. Clearly, the Taylor-Proudman theorem is no longer applicable; 
the interior azimuthal velocities are no longer uniform in the vertical direction. A 
comparison of curves ( A )  and (B)  of figures 3 (a, b,  c) shows that in the interior, well 
away from the Ekman layers, the azimuthal flow decays initially at  a slower rate as 
the stratification increases. On the other hand, curves (C) and (D)  in figures 3(b, c) 
show that in the interior, close to the Ekman layers, the flow decays initially at a 
faster rate as the stratification increases. These results are interpreted as showing the 
effect of the progressive confinement of the meridional circulation by stratification 
(see $4.2). Note also from curves (C) in figures 3(b, c) that, although the meridional 
circulation spin-up phase proceeds more rapidly at this location for stronger stratifi- 
cation, it is less effective in the overall spin-up process. Finally, note from curves ( E )  
in figure 3 that stratification enhances spin-up within the Ekman layer. 

Figure 4 shows Iw/AQrl at different radial locations a t  mid-depth ( z / H  = 0 )  for 
three values of the stratification parameter. Walin's theoretical predictions for the 
interior points are shown in broken lines. The relevant parameters are listed in table 1. 

Figure 4 (a)  shows the results for a homogeneous fluid. Curves ( A )  and (C) show that, 
apart from the inertial modes, the scaled azimuthal flow is uniform in the interior. 
Together with the results of figure 3 (a)  this implies solid-body rotation of the interior 
(Greenspan & Howard 1963). The side-wall boundary layer, which serves to adjust the 
azimuthal velocity to the wall, is of thickness 6, N E4(2H) ,  which for the parameters 
of figures 4(a, b )  gives S,/H = 0.33 and for figure 4(c) gives &/H = 0.31. Therefore 
the locations of curves ( D )  and ( E )  are within this viscous boundary layer, and at these 
locations spin-up proceeds much more rapidly. 

Figures 4(b, c) show the results for a stratified fluid. The scaled azimuthal velocity 
is n6 longer uniform in the interior. In general, spin-up proceeds initially more rapidly 
at smaller radii and decreases as the radius increases until one reaches the viscous 
boundary layer on the outer wall. This result tells us that vortex-stretching by the 
meridional circulation is stronger a t  smaller radii. The results of figure 4 ( b )  for moderate 
stratification (8u-l = 0.49) display clearly this non-uniform stretching. The results of 
figure 4 (c) for strong stratification (Sa-' = 1-03) show that in the interior at mid-depth 
the spin-up process is very weak. Curves ( D )  and ( E )  of figure 4 are for locations within 
the side-wall layer, and the velocity decays faster in this viscous region than in the 
interior; note, however, a trend toward a slower rate of decay for increasing stratifi- 
cation. 

4.2. The meridionalJow 

Figures 5 and 6 show the plots of the meridional stream function from our numerical 
simulations for two values of the stratification parameter. Note the progressive con- 
finement of the meridional circulation as the stratification increases. This result was 
predicted previously by Walin (1969) and demonstrated by Barcilon et al. (1975) in 
their numerical experiments. 

Figure 5 shows the meridional-stream-function plots for the same parameters as 
the results shown in figures 3(b) and 4 ( b )  (Sa-1 = 0.49, E = 7.24 x B = 0.019, 
Qi = 0.314 rad s-1). The plots show a combination of the meridional circulation and 
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( h )  

FI~URE 5. Meridional-stream-function contours for Sa-' = 0.49, E = 7.24 x e = 0.019. 
(a) shows the contours 6 s (0.30 rotation periods) after the impulsive start, and (b)-(Z) show the 
contours at 2 s (0.10 rotation periods) intervals thereafter. 
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a 
FIGURE 6. Meridional-stream-function contours for Su-' = 1.03, E = 5.92 x lo-*, 6 = 0.019. 
(a) shows the contours 10 s (0.50 rotation periods) after the impulsive start, and (b) - ( i )  show 
the cont.ours at 2 s (0.10 rotation periods) intervals thereafter. 

the inertial-internal gravity modes. Using the azimuthal-velocity decay curve in 
figure 4 (b), the period of the inertial-internal gravity mode is found to be about 8.8 a, 
and thus about 2.5 periods of this oscillation are covered in figure 5. The period of the 
m = 2, n = 1 mode as calculated using (1) for the parameters of figure 5 and 
I R i  = 0.314 rad s-l is 9-04 s. This agreement is consistent with the work of Lee (1975) 
(see 8 2). Note also that the inclination of the corner jet is seen to oscillate with the 
period of the inertial-internal gravity modes. The velocities induced by the inertial- 
internal gravity modes and the velocities of the meridional circulation are comparable 
in magnitude. This is consistent with the results of Greenspan & Howard (1963) for 
the homogeneous problem. These workers found the velocities in the meridional 
circulation to be O(E)eIRR) and the velocities induced by the inertial modes also to 
be of the same order of magnitude, and this conclusion is not changed for the values 
of stratification considered in this paper. 
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Figure 6 shows the meridional-stream-function plots for the same parameters as 
the results shown in figures 3(c) and 4(c) (#a-l = 1.03, E = 5.92 x lo-*, E = 0.019, 
Ri = 0.314 rad s-l). The same observations can be made as stated above for figure 6. 
Using the azimuthal velocity decay curves in figure 4(c), the period of the inertial- 
internal gravity mode is found to be about 6.8s and thus about 2-5 periods of 
this oscillation are covered in figure 6. The period of the rn = 2, n = 1 mode 
calculated using (1)  for the parameters of figure 6 and for Ri = 0.314 rad s-l gives 
6.55 S. 

The plots of theinterior azimuthal velocities in figures 3 and 4 reveal some character- 
istics of the inertial-internal gravity-mode structure. A comparison of curves (A) 
and (B) in figure 3 for fixed radius shows a reduced amplitude for the oscillations close 
to the quarter-depth location. This is consistent with m = 2 for the dominant mode, 
as was found by Lee (1975) (see $2). A comparison of curves ( A ) - ( 0 )  in figure 4 for 
fixed depth shows the amplitude is relatively large at small radii compared with that 
at large radii. This result is not consistent with the simple inviscid eigenvalue problem 
stated in $2.  Warn-Varnas et al. (1978) found a similar discrepancy for the homo- 
geneous-flow problem. 

The radial velocity in the interior, which gives rise to the Coriolis term in the azi- 
muthal velocity equation, is plotted in figure 7 as part of the diagnostic studies of (3) 
(see 9 5.2). It is seen clearly that the radial velocity oscillates with the period of the 
dominant mode of the inertial-internal gravity oscillations. 

5. Discussion of previous and present work 
5.1. Limitations of the theoretical models 

The excellent agreement obtained in comparisons between the results of the linearized 
theory of Greenspan & Howard (1963) and the experimental and numerical results for 
homogeneous spin-up (Warn-Varnas et al. 1978) demonstrates that the theory is 
quantitatively accurate. The solutions of Greenspan & Howard are for spin-up flow 
between two infinite disks, but they showed that the effect of the cylindrical side wall 
is small. This information, together with the high quality of the agreement out to 
almost two spin-up times, tells us that for homogeneous spin-up the interior is almost 
completely spun up by the meridional circulation alone. This is consistent with our 
picture of homogeneous spin-up occurring through an essentially solid-body rotation 
of the interior with direct viscous effects confined to boundary layers (see figures 
3(a) and 4 (a)). Further, Benton & Clark (1974) and Warn-Varnas et al. (1978) demon- 
strated that for 8 < 0.3 only small departures from the results of linear theory 
occur. 

A different picture emerges from the work of Walin (1969). In  stratified spin-up, 
the effect of the meridional circulation, in general, is to bring about only a partial 
spin-up of the interior. Total adjustment to the final state of solid-body rotation a t  
the new rotation rate is accomplished by viscous diffusion on the larger diffusion time 
scale rd = E-lR-l. However, comparisons to be discussed below between the theory 
of Walin and our numerical results show, in agreement with the previous experimental 
work (see §2) ,  substantial discrepancies for times of the order of the homogeneous 
meridional flow spin-up time T = E-tQ-l, which was the time scale of interest in 
Walin's analysis. For easy referen'ce the linear expression (6 = 0) derived by Walin 
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for the decay of the azimuthal velocity in the interior is shown below in the form of 
the scaled non-dimensional azimuthal velocity : 

where C, = 2a/an J,(a,), K, = u,/a, 7, = E-h2-1(tanhSK,)/SK,, and a, are zeros of 
the first-order Bessel function. 

Comparisons are made in figures 3(b,  c), 4(b, c) of the theoretical predictions 
(broken lines) against the numerical results (solid lines) obtained for a very small 
Rossby number (e = 0.019). Aside from the presence of the inertial-internal gravity 
modes (which were omitted from the theory), the overall disagreements between the 
theory and the numerical results are appreciable. In  general, there is initial agreement 
for a time after the impulsive start, but the curves begin to diverge, with the numerical 
results decaying faster than the theory. 

Comparisons are also made in figures 1 and 2 of the theoretical predictions (dashed 
lines) against the numerical results (solid lines) and the measurements (dots) of Lee 
(1975). It could be argued that these are unjustified comparisons since the theory 
is linear (E = 0) and the numerical results and the measurements are for E = 0.222. 
A comparison of some of the numerical results in figures 1 and 2 for e = 0.222 with 
the corresponding numerical results in figures 3 and 4 for e = 0.019 shows differences 
of only a few per cent. (Compare figure 1 (c )  with curve (B)  of figure 4 (b), and figure 2 
with curve (B) of figure 4(c).) Thus, over the range of E studied, the results are only 
weakly dependent on e, and hence nonlinearity cannot account for the discrepancies 
between the theory and the experiments. Barcilon et al. (1975) also reached this 
conclusion. The comparisons made in figures 1 and 2 show the same trends as those 
of figures 3 and 4. 

Figure 3 ( b )  shows comparisons of the theory with the numerical results for 
Sa-l= 0.49 for three different vertical locations a t  mid-radius. Curve (C) shows that 
the theory accurately predicts the flow in the interior regions close to the Ekman 
boundary layers. This is the region within which we know the meridional circulation 
is concentrated. Curves (B) and (A) show systematically increasing divergence of the 
results as higher levels approaching mid-depth are considered. We know that the 
meridional circulation weakens with height as we approach mid-depth. Figure 4 (b) 
shows similar comparisons for three different radial locations at mid-depth. Note that 
we have systematically incrsasing divergences between the theory and numerical 
results as we move outward radially. We know that the spin-up effect of the meridional 
circulation is relatively strong for small radii at mid-depth. 

Figures 3 (c) and 4 ( c )  show comparisons of the theory with the numerical results for 
Sa-l= 1-03 for the same vertical and radial locations as were used for figures 3(b) 
and 4 (b). Although the discrepancies between the theoretical predictions and the 
numerical results are larger for the more strongly stratified case, the same general 
trends described for figures 3 (b) and 4 (b) are present. 

5.2. The eflects of viscous diffusion in the interior 

The results presented in $4.2 show that the corner jet oscillates with the period of 
the inertial-internal gravity mode. This oscillation was noticed previously by Barcilon 
et al. (1976), but these workers claimed to have observed a much larger period, i.e. 
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two or three rotation periods (see $ 2). We suggest, that the error arose from having 
too few stream-function plots, which in turn led to aliasing of the oscillation. More 
importantly, in order to account for the experimentally observed faster spin-up, 
Barcilon et al. then argued that this oscillating corner jet transports angular momentum 
from the vertical boundary layer into the bulk of the interior (see $ 2 ) .  This argument 
presents a substantial difficulty. It has been shown (Greenspan 1969) that the inward 
radial distance moved by a fluid particle during the meridional circulation phase of 
spin-up is O(ER), where E is the Rossby number and R is the radius of the container. 
For the small-Rossby-number flows considered by Barcilon et al. this distance is small 
and hence the fluid ejected into the interior from the vertical boundary layer will not 
reach the bulk of the interior. The discussion given by Greenspan is for a homogeneous 
fluid, but the argument is not essentially changed for a stratified fluid. 

The above comparisons show that agreement between the theory and the numerical 
results is good when we are dealing with locations and times for which the meridional- 
circulation flow is strong. Correspondingly, if this meridional flow is weak, agreement 
is poor. Thus, since viscous diffusion in the interior was omitted from the theory and 
since the possible effects of nonlinearity and other sources have been shown to be un- 
important, it  must be concluded that the observed discrepancy between the theory 
and the numerical results for the time span 7 = E-&P is due to viscous diffusion in 
the interior. The effects of viscous diffusion in the interior are enhanced for stratified 
spin-up over homogeneous spin-up since the effect of the meridional circulation in the 
stratified case is to produce radial and vertical gradients of the azimuthal velocity in 
the interior, whereas in the homogeneous case the azimuthal velocity in the interior 
decays essentially as solid-body rotation (see figures 3 and 4 ) .  

5.3. Diagnostic studies of the azimuthal velocity equdion 

The above conclusion concerning the viscous effects in the interior is verified by 
examining the size of each of the terms in the azimuthal-velocity equation. Among 
the terms on the right-hand side of (3), the nonlinear advective terms 

and the curvature term -vu/r ,  are several orders of magnitude smaller than the 
Coriolis term, - 2&u, for the small-Rossby-number problems considered in this paper. 

Figure 7 shows the plots of the Coriolis term (solid lines) - 2&u and the viscous 
term (broken lines) v(V2v - v /r2)  as functions of time for up to o(7). Hence, the solid 
line can be interpreted as the radial-velocity plot with the factor of - 2Ch (see $4.2) .  

Figure 7 (a) is for the homogeneous fluid at mid-radius, mid-depth using the same 
parameters as in figures 3 (a) and 4(a). As anticipated, the viscous term is two or three 
orders of magnitude smaller than the Coriolis term. This is consistent with our earlier 
discussion on homogeneous spin-up that the azimuthal velocity in the interior decays 
essentially in solid-body rotation (see figures 3(a) and 4 ( a ) )  and that the viscous 
effects in the interior are negligible. Note in figure 7 (a) that the Coriolis term (or the 
radial velocity) oscillates with the period of the inertial mode. 

Figure 7 ( b )  is for a stratified fluid (Sa-l= 1-03) at mid-radius and close to mid- 
depth ( r / R  = 0, z /H = - 0-1 1) using the same parameters as in figures 3 ( c )  and 4 ( c ) .  
Notice that the Coriolis term (or the radial velocity) oscillates with the period of the 
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FIQURE 7. Plots of the Coriolis term (shown in solid lines) - 2Qu, and the viscous term (shown 
in broken lines) v(V%-v/rZ). The ordinate shows the values in c.g.8. units. (a) Results for homo- 
geneous fluid at mid-radius, mid-depth. The values of the viscous term are 0(10-6-10-6), ( b )  
Results for Sa-1 = 1-03 at r / R  = 0.5, z / H  = - 0.11. (c) Results for Sa-1 = 1-03 at r/R = 0.5, 
z / H  = - 0.78. 

inertial-internal gravity mode (see 0 4.2). Since the theory of Walin (1969) filtered 
out the inertial-internal gravity modes, the Coriolis term used in Walin's formulation 
would be obtained by averaging the Coriolis term shown in the figure over one period 
of the inertial-internal gravity oscillation. We also noted that in stratified spin-up 
substantial flow gradients are developed in the interior, which give rise to enhanced 
viscous diffusion. It is obvious in figure 7 (b) that a t  mid-radius and near mid-depth 
this averaged Coriolis term is larger than the viscous term for early times, but after 
about 1 rotation period the averaged Coriolis term becomes comparable to or even 
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smaller than the viscous term. Therefore, omitting the viscous term and retaining 
only the averaged Coriolis term, as was done in Walin’s theory, would lead to  an 
appreciable underestimation of the acceleration of fluid in the azimuthal direction 
(see curve (A) of figure 3 (c)). 

Figure 7(c) is the same as figure 7 ( b ) ,  except that the location ( r / R  = 0 * 5 , z / H =  
- 0.78) is closer to the Ekman layer. We know that the meridional circulation is con- 
centratedin this region, and figure 7 (c) shows that the Coriolis term is generally larger 
at this level than near mid-depth as shown in figure 7 (b). It is also apparent in figure 
7 (c) that the viscous term becomes comparable to the averaged Coriolis term after 
about 2.5 rotation periods. Consequently, a t  this level the theoretical prediction is ex- 
pected to diverge from the numerical results after a longer period of time has elapsed 
(compare curve (C) with curve (A) of figure 3 ( c ) ) .  

It has now been established that the source of the discrepancy between theory and 
the numerical results in stratified spin-up is the neglect in the theory of viscous 
diffusion in the interior over the time scale 7. 

6. Conclusions 
The spin-up flow of a thermally stratified fluid in a cylinder with an insulating side 

wall has been examined numerically using the model of Warn-Varnas et al. (1978). The 
numerical results were first checked by comparing them against the accurate laser- 
Doppler measurements of Lee (1975), and excellent agreement was obtained. New 
results on the radial and vertical structures of the decaying azimuthal flow were 
presented. It was shown that Substantial flow gradients me created in the interior 
of the fluid during the meridional-circulation spin-up phase. We found, in agreement 
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with previous workers, that over the time scale 7 the azimuthal flow decayed signifi- 
cantly faster than the predictions of the theory of Walin (1969). By making use of 
established conclusions from previous work and the results presented in this paper 
it has been established that viscous diffusion in the interior, arising from the interior- 
flow gradients, is the cause of the discrepancy with the theory. 

Plots of the meridional stream function show a combination of the meridional- 
circulation flow and the inertial-internal gravity oscillations excited by the impulsive 
spin-up. A comparison of the period and spatial structure of these oscillations with the 
results of a simple eigenvalue problem indicated that most of the energy is in the 
axisymmetric rn = 2,  n = 1 mode. An oscillation of the corner jet was shown to be the 
result of the superposition of the meridional-circulation flow and the inertial-internal 
gravity modes. The suggestion by Barcilon et al. (1975) that this oscillating corner jet 
is responsible for the faster decay of the azimuthal flow is shown to be untenable. 
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